Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

Masataka Watanabe, ${ }^{\text {a }}$ Asami Miura, ${ }^{\text {b }}$ Taisuke Matsumoto, ${ }^{\text {b }}$ Shuntaro Mataka ${ }^{\text {b }}$ and Thies Thiemann ${ }^{\text {b* }}$

${ }^{\text {a }}$ Interdisciplinary Graduate School of Engineering, Kyushu University, 6-1 Kasuga-koh-en, Kasuga-shi, Fukuoka 816-8580, Japan, and
${ }^{\mathbf{b}}$ Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koh-en, Kasuga-shi, Fukuoka 816-8580, Japan

Correspondence e-mail:
thies@cm.kyushu-u.ac.jp

## Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.030$
$w R$ factor $=0.102$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## Bis(4-chloromethyl-2,5-dimethyl-3-thienyl)methane

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~S}_{2}$, the molecule has a crystallographic twofold axis. The dihedral angle between the symmetry-related thiophene rings is $85.54(8)^{\circ}$.

## Comment

The title compound, (I), was synthesized by chloromethylation of 2,5-dimethylthiophene (Gol'dfarb \& Kondakova, 1956). Compound (I) is an important starting material for bisthienofused ring systems (Brown \& Carruthers, 1981) and has been used as a starting material for the construction of macrocyclic systems (Li et al., 1994). The asymmetric unit of (I) contains one-half of the molecule (Fig. 1), with the other half generated by a crystallographic twofold axis passing through atom C6. The C3-C7 bond length is 1.491 (3) $\AA$. While there are no comparable data available for chloromethyl-substituted thiophenes, this bond length is comparable to corresponding bonds in chloromethylarenes. The $\mathrm{Cl} 1-\mathrm{C} 7$ bond length in (I) is 1.828 (2) $\AA$. In chloromethylarenes, the length of the benzylic $\mathrm{C}-\mathrm{Cl}$ bond is governed by the electronic character of the arene, with a range of $1.713-1.816 \AA$ and an average bond length of $1.793 \AA$ [Cambridge Structural Database (CSD); Release of 2004; Allen, 2002]. In electron-rich arenes, longer $\mathrm{C}-\mathrm{Cl}$ bonds are found, but these are still slightly shorter than the $\mathrm{C} 7-\mathrm{Cl} 1$ bond in (I).

(I)

The dihedral angle between the symmetry-related thiophene rings is $85.54(8)^{\circ}$, putting the two thienyl cores virtually in an orthogonal position with respect to each other. Coplanar positioning of the rings in one molecule is impeded by the closeness of the $\alpha$-substituent of one ring to either the $\alpha$ - or $\beta$ substituent of the second ring, while the size of the dihedral angle is governed in part by intermolecular packing. At 116.5 (2) ${ }^{\circ}$, the $\mathrm{C} 2-\mathrm{C} 6-\mathrm{C} 2^{\mathrm{i}}$ bond angle [symmetry code: (i) 1 $\left.-x, y, \frac{3}{2}-z\right]$ is among the largest of the angles found in diarylmethanes and bis(hetero-aryl)methanes (average value $114.5^{\circ}$; CSD). The distance between the chloro-substituted C atoms C 7 and $C 7^{i}$, which are the reactive centers for macrocyclization reactions, is 4.766 (3) $\AA$.

Received 18 May 2005 Accepted 24 May 2005 Online 31 May 2005
$\qquad$


Figure 1
A view of the molecule of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level. The suffix $a$ corresponds to symmetry code (i) in Table 1.


Figure 2
A view, down the $b$ axis, of the unit cell contents of (I). Inter- and intramolecular contacts are shown as dashed lines.

In the crystal structure, molecules form chains in a stepwise fashion parallel to the $c$ axis (Fig. 2). The governing factor in the chain is the intermolecular carbon-halogen interaction between atoms Cl 1 and $\mathrm{C}^{\mathrm{iv}}$ [symmetry code: (iv) $x,-y, \frac{1}{2}+z$ ] [3.324 (2) A, the sum of the van der Waals radii of C and Cl being $3.45 \AA$ (Bondi, 1964)]. The intramolecular distance between atoms Cl 1 and $\mathrm{C}^{1}{ }^{\text {i }}$ is longer, at 3.826 (2) $\AA$, and does not qualify as a close contact [a $\mathrm{Cl} \cdots \mathrm{C}$ close contact is taken as equal to or smaller than $3.45 \AA$ (Desiraju \& Parthasarathy, 1989)]. However, the distance to the corresponding H atom is within the range of a close contact $\left[\mathrm{Cl} 1 \cdots \mathrm{H} 5 B^{\mathrm{i}}=2.92 \AA\right.$; a $\mathrm{Cl} \cdots \mathrm{H}$ close contact is taken as equal to or shorter than 2.96 A (Desiraju \& Parthasarathy, 1989)]. Furthermore, there are two weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) involving both methyl groups of both thienyl units [for $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, the $\mathrm{H} \cdots \pi$ distance is proposed as equal to or shorter than $3.1 \AA$ (Nishio \& Hirota, 1989)].

## Experimental

Compound (I) was prepared by the reaction of 2,5 -dimethylthiophene ( $20.0 \mathrm{~g}, 0.18 \mathrm{~mol}$ ) and chloromethyl methyl ether ( 50.0 g , 0.62 mol ) in acetic acid ( 100 ml ) (Gol'dfarb \& Kondakova, 1956; Li et al., 1994) and crystallized from benzene by slow evaporation (yield $13 \%)$.

## Crystal data

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~S}_{2}$
$M_{r}=333.33$
Monoclinic, C2/c
$a=20.797$ (4) A
$b=5.068$ (1) A
$c=16.253$ (3) $\AA$
$\beta=116.42(1)^{\circ}$
$V=1534.1(5) \AA^{3}$
$Z=4$

$$
D_{x}=1.443 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 8753
reflections
$\theta=3.0-68.2^{\circ}$
$\mu=6.20 \mathrm{~mm}^{-1}$
$T=123.1 \mathrm{~K}$
Prism, colorless
$0.30 \times 0.30 \times 0.12 \mathrm{~mm}$

## Data collection

Rigaku R-AXIS RAPID
diffractometer
$\omega$ scans
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
$T_{\text {min }}=0.431, T_{\text {max }}=0.475$
9291 measured reflections
Refinement
Refinement on $F^{2}$
$R(F)=0.030$
$w R\left(F^{2}\right)=0.102$
$S=1.00$
1382 reflections
99 parameters
H -atom parameters constrained

1382 independent reflections
1278 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=68.2^{\circ}$
$h=-24 \rightarrow 24$
$k=-5 \rightarrow 5$
$l=-19 \rightarrow 18$
$w=1 /\left[0.001 F_{o}{ }^{2}+\sigma\left(F_{o}{ }^{2}\right)\right] /\left(4 F_{o}{ }^{2}\right)$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}_{\circ}^{-3}$
$\Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}$
Extinction correction: Larson (1970)

Extinction coefficient: 44 (4)

Table 1
Selected geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| $\mathrm{C} 11-\mathrm{C} 7$ | $1.828(2)$ | $\mathrm{C} 3-\mathrm{C} 7$ | $1.491(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 2-\mathrm{C} 6$ | $1.517(2)$ |  |  |
| $\mathrm{C} 2-\mathrm{C} 6-\mathrm{C} 2{ }^{\mathrm{i}}$ | $116.5(2)$ |  |  |

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots \mathrm{~A}$ | $D-\mathrm{H} \cdots A$ |
| :--- | ---: | :--- | ---: | :--- |
| C5-H5A $\cdots \mathrm{Cg1}^{\text {ii }}$ | 0.95 | 2.84 | $3.767(2)$ | 166 |
| C8-H8B $\cdots \mathrm{Cg1}^{\text {iii }}$ | 0.95 | 3.16 | $4.060(2)$ | 158 |

Symmetry codes: (ii) $x, 1+y, z$; (iii) $x, y-1, z$.
All H atoms were placed in calculated positions and refined as riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and with $\mathrm{C}-$ $\mathrm{H}=0.95 \AA$. The methyl groups were not allowed to rotate. Cg 1 is the centroid of the thiophene ring.

Data collection and cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2004); structure solution: SIR97 (Altomare et al., 1999); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); publication material: CrystalStructure.

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

## organic papers

Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Brown, T. M. \& Carruthers, W. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 29042905.

Desiraju, G. R. \& Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 87258726.

Gol'dfarb, Ya. L. \& Kondakova, M. S. (1956). Izv. Akad. Nauk SSSR Ser. Khim. pp. 495-505.
Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.
Li, Y. Q., Thiemann, T., Sawada, T. \& Tashiro, M. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2323-2329.
Nishio, M. \& Hirota, M. (1989). Tetrahedron, 45, 7201-7245.
Rigaku (1999). CrystalClear. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

